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ABSTRACT

This paper presents a new analytical treatment of Unsteady Aerodynamics the

linear theory covering the subsonic compressible (inviscid) case drawing on some

recent work in Operator Theory and Functional Analysis. The specific new results

are:

(a) An existence and uniqueness proof for the Laplace transform version of the

Possio integral equation as well as a new closed form solution approximation thereof.

(b) A new representation for the time-domain solution of the subsonic compressible

aerodynamic equations emphasizing in particular the role of the initial conditions.
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1. Introduction

This paper presentsa new analytical treatment of UnsteadyAerodynamicsdraw-
ing on techniquesof Operator Theory and Functional Analysis. By UnsteadyAero-
dynamics we meanhere the time-domain solution of the field equations thereby
also emphasizingthe role of initial conditions generally ignored in the literature be-
causeof the preoccupationwith the oscillatory response. In this paper we consider
the subsonic(or linearizedtransonic) compressiblecase inviscidof course in two
spacedimensions.The extensionto three spacedimensionsis in progress.This work
was initiated as part of the Aeroelastic Stability problem bending-torsionflutter
in compressibleflow. The incompressiblecaseis treated in [1]for the 2-D strip model
of Coland (see[3]).

To clarify terminology, by the "2-D Linear or SubsonicCompressibleCase" we
meanthe flow characterizedby the partial differential equations(being the linearized
versionof the inviscidTSD, Section2) for the velocity potential, _b(z,z, t) in the X-Z

plane, -oc < z < oc and we take 0 _< z:

02_ 2 02_

The main boundary conditions are

02¢ 02¢
Ot2 + 2Maoo OtOz (1.1)

i) Flow Tangency

0,
o(x,o+,t) _a(X,t), IXl< b

where Wa(Z, t) is the downwash, 2b the strip width, and

(1,2)

ii) The Kutta-Joukowski conditions (see Section 2). (1.3)

The initial condtions are

_(x,_, 0), o__ (x,_,0).

The main interest is of course in the acceleration potential

(in particular for z 0+) and its Laplace transform

F_(z,z,A) c at_(z,z,t) dt, aea>0.



By a "particular" solution of (1.1) we mean a solution of (1.1) satisfying the

boundary conditions but leaving the initial conditions unspecified allowed to be

arbitrary. The first such solution was given by Possio [2] in the form of an integral

equation for the "oscillatory" case where the downwash is an oscillation at the

frequency _:

wa(z,t) wa(x,i_)_ _t, t > 0

and the velocity potential then is also oscillatory,

+(x, t)

Several authors (see [3]) have presented various versions of proofs, the clearest perhaps

being [4]. In this paper we present the Laplace transform version valid for "artibrary

motion" for arbitrary downwash functions, where unlike in the oscillatory case,

close attention has to be paid to the initial conditions; we do this by resurrecting the

classical time-domain source-doublet integral of Kfissner [5]. New with this paper is

the existence and uniqueness proof for the Possio integral equation, as well as a new

closed form analytical solution approximation. Numerical computations using this

solution for the lift and moment [7] show close agreement with the results obtained

by series expansions or numerical approximations (e.g., [8]) in the main region of

interest of the parameters.

In Section 2 we provide an existence and uniqueness theorem for the time-domain

solution of (1.1) for arbitrary initial conditions and satisfying the flow-tangency con-

dition. Whether it satisfies the Kutta-Joukowski conditions depends on the aerody-

namic initial conditions. Of course it is customary to dismiss solutions which don't

as "nonphysical" as in the nonlinear case [9] but the fact remains that in the mathe-

matical model we have to reckon with their existence. Indeed it is an open question

to characterize the initial conditions that lead to solutions which satisfy the Kutta-

Joukowski condition.

If we set the time derivatives in (1.1) to be zero, we have:

024_ 024_ 0, (1.4)(1- M2) -g-3z2 + Oz2

but if we also retain the boundary conditions, the solution becomes a function of

time since the downwash is. Again a particular solution can be obtained by classical

techniques (see [3]) and we shall denote this by OM(z,z,t). However we should note

that the initial conditions are not the same for 4_M(z, z, t) and 4_p(z, z, t), the Possio

solution. If in (1.4) we set

M 0; U ao_M ¢ O,



and U enters via the Kutta-Joukowski condition, we have the "incompressible" case

which leads to the classical "airfoil" equation [3]. We shall denote this solution

Oo(X,z,t). It is possible to obtain _M(X,Z,t) from Oo(X,z,t) by a transformation

of coordinates the Prandtl-Glauert transformation but we will not need to

consider this at all.

©ne of our main results is that any solution _b(z, z, t) of (1.1) can be expressed as

the superposition

¢(z,z,t) CM(Z,z,t) + ¢_(z,z,t) (1.5)

where 4_R(x', z, t) is a solution of (1.1) satisfying "homogeneous boundary" conditions,

but with a forcing term depending on 4_M(') (see Section 5), and also satisfies the

Kutta-Joukowski if 4_(x, z, t) does. In particular therefore 4_p(x', z, t), the Possio solu-

tion, has such a representation. Note that depending on the initial conditions there are

solutions of (1.1) satisfying the flow-tangency condition but not the Kutta-Joukowski

conditions whether "nonphysical" or not. Since the aerodynamic initial conditions

are never known, this makes "unsteady aerodynamic" calculations (e.g., [10]) difficult

to verify by experiment.

In an ascending scale of accuracy we may put

(all satisfying the Kutta-Joukowski conditions) in the sense that each may be used to

calculate the lift and moment as a function of U (for 4_0(.)), or of M, for 4_f(.) and

4_p(.). Note that the initial conditions are different for the latter two, unless we set

 a(0,x)  a(0,x) 0.

Organization

We begin in Section 2 with an abstract (function space) formulation of (1.1) with

an appropriate (L2) definition of boundary values. We consider first the initial value

problem for homogeneous boundary conditions leading to the time-domain semigroup

solution (for appropriate definition of energy) and the resolvent, the Laplace domain

solution. Unfortunately, some knowledge of the Theory of Semigroups is assumed in

Section 2. Basically it provides the machinery for going from the Laplace domain

to the time domain, and in our case both are important. In Section 3 we develop

the Laplace transform version of the Possio equation, starting with K/issner's form of



the time domain solution integral. The bulk of the sectionis devotedto deriving a
constructive existence(and uniqueness)of solution leading to a closedform solution
which is accurateto the order

1
M 2 log

in terms of M or

in terms of

]7 2 log 7]

._M
7 u(1-M )

We show that this solution reduces to the known solution for M 0.

In Section 4 we treat (1.4). We obtain a particular time-domain solution, satisfying

the Kutta-Joukowski condition, for arbitrary downwash function without invoking

the Prandtl-Glauert coordinate transformation. It is a more rigorous mathematical

treatment than in [3] with a few new, more general results as well. Finally in Section 5

we assemble the complete solution combining boundary value and inital value,

connecting with the results in Section 2. In particular we show that the Possio

solution can be written

+

where _SR(') satisfies (1.1) with homogeneous boundary condition and zero initial con-

dition but a forcing term depending on _SM('). We also derive an alternate expression

for the Laplace transform q_p(k, x, z) providing an alternate to the Possio equation.



2. The Field Equations

The basic TransonicSmall Disturbanceor TSD equationsfor the (perturbation)
velocity potential in compressibleflow are, following for examplethe derivation in [9],
with 0(x, y, z, t) denoting the velocity potentiah

02_ 02_
Ot 2 + 2Mao_ OtOz

2 02* (2.0)02_ O_ 02_ 2 02_ + ao_ ,
_(_-M2)-5-_ _ ox ox2 + _ oy2 o_2

--oc<x<oc, --oc<y<oc, 0<z<oc

where, in the usual notation, M is the Mach number and ao_ the speed of sound, and

c (1 + 7)M2a_, 7 being the adiabatic constant.

In this paper we shall only consider the linear case where we take c 0; moreover

we restrict ourselves to the "planar" case where the potential is independent of the

variable y, so that the partial derivative with respect to y is set equal to zero. Thus

we have for 0(x, _, t):

020 2 020 020 020
_(1- M2) _ + _ 0_2 0t2 + 2M_ 0t0x (2.1)

The boundary conditions that need to be imposed are:

i) Flow Tangency:

o0
0_ (x,0+,t) _a(t,X), IXl< b (2,2)

the right side being the "downwash" function which vanishes outside the interval

I-b, b], 2b being the "strip" width.

ii) Kutta- Joukowski:

This condition is stated in terms of the acceleration potential:

_(x,_,t) oO(x,_,t) oot + u _ O(x,_, t).

We require that

_(x,0+,t) 0,

(= zero pressure jump at trailing edge).

x b- and x>b



iii) Far-field Conditions:

O, 0
Oz Oz

as Ixl _ o_ for each nonzero _ and _ _ o_ for each x. See [3], [9]for more on these
conditions.

In addition of course considering (2.1) as an "initial value" problem in the time

coordinate t, we will need to specify initial conditions (at t 0) as well.

Abstract Formulation

The first question to be decided is the choice of the function space in which to

work. Let /_ denote the half-plane:

Our basic space will be L2 /_ with _weights," norm (squared) defined by:

2Ilfll 2 Ilflll 2 m (1-y/_)_llf_ll _ m _oollf311_ (2.3)

where

fl

f f2,

£

We shall denote this Hilbert space by _.

f,

Boundary Values

Since the domain is not bounded we cannot use the usual "trace" definition for

boundary values. Here we shall define them in the L 2 sense. We begin with the

boundary z O. We shall say that .f(0_'), -cx_ < 0_' < cx_, f(.) C L2[R'] is the

boundary value on the boundary at z 0 of a function f(x, z), Ixl< _, 0 < _ < _,

in L2 [/_] if

[_ If(z)- f(z,z)l 2 dz (2.4)
O0

which is defined a.e. in 0 < z < oc, goes to zero as z _ 0+.



Lernrna

Supposef(.,.) andsodoes
existst_(.)c L2[m] such that

f'_ Ih(z)- f(z,z)l 2 dz ---, 0
O0

(L2-partial derivative). Then there

as z ---_ 0 + .

Proof

We note that

o _)_o_ f(z, < oc,dz

Let 0 _< z, _ 0. Then

f_ If(z,z,)- f(x, zm)l 2 dx

a.e. in -oc<x<oc.

fo_ f_, Of(z,z) dz 2o_ _, Oz dz.

Hence f(.,z,) defines a Cauchy sequence in L2[R'] which converges to a function,

denote it h, in L2[R1]. And of course

fx_ Ih( x)- f(x,z)l 2 _ 0, as z 0.

The limit h(.) is clearly independent of the sequence chosen. Hence h(.) is the bound-

ary value at z 0, and we may use the notation

h(z) f(z, 0+)

since it would be consistent with the pointwise limit, should there be one.

The situation is different on the boundary z' +oc, z' -oc in that if, as we

shall, we define the boundary value to be f(+oc, z), if

fo °_ If(z,z) - f(+oc, z)l 2 dz _ 0 as x _ oc

(and similarly f(-oc, z) as the boundary value at z -oc, if

fo_ If(z,z) - f(-oc, z)l 2 dz --, 0 as z _ -oc )
J0



in that

s_(.,./_ _[_]
does not assure this. Although we do have from

_g <9]f(L,z)] 2 2Re -_xf(x't) f(x'z)dx - ]f(O,z)] 2

as L--+ (x_

as L _ -cx_, a.e. in z.

Similarly we define the boundary value f(x, cx_) by

/_ If(z, oc) -/(z,z)l 2 dz _ 0 as z --_ oc (2,5)
O0

assuming of course the limit exists.

We note that (2.1) is an initial-value plus boundary-value problem, albeit linear.

The technique for solving such problems using the Theory of Semigroups of Operators

is outlined in [7]. Thus we can construct the solution as part due to the initial value

problem setting the boundary value to be zero and part due to the boundary problem

without regard to the initial value. The former leads to a Cauchy problem and that
is what we shall deal with first.

The Initial Value Problem: Semigroup Solution

We introduce the operator A with domain and range in _ by:

0fl

s_ _ _nd_ _ L_[_]
79(A) f f_,

_ and_ [_]f3 _ --5-;-_C L2 R

with the "homogeneous" boundary conditions:

i) I.f3(x,c)l2dx _ 0 as c-_0
OO

and the "regularity" conditions:

Fii) IA(L,_)I _ d_ -_ 0 as ILl-_ _, i 1, 2, 3, a.e. in x



Fiii) I,f_(x,L)l2 dx _ 0 as L--+ oc, a.e. in x
O<2

Af

-2u_ (1-M2)% _ %

0 0
0x

0 0
0z

1

72 (2.6)

73

Note that the Kutta-Joukowski condition is omitted. Thus defined, A has clearly a

dense domain. Moreover:

Lernrna

A is dissipative (on its domain).

Proof

With [, ] denoting inner products in 7-{, as well as L 2 [R_], we have:

and

[Af, f]

2Re[Af, f]

m m2g_f 1

__ 2 __ fl-&. + (1- M_)_ o72 o73Ox + a°° Oz ' J

+ (1-M2)aL [0z. ' f2 + aoo [Oz ' f3

+[ )Lax , '&.J

+_ t&,f_ + £, &j + -_-z,A +

[ _+ f_' axj)

[.r_,o_j).



Now

Oz

fO °lira (IfIIL,_)I_- If_I-L,_)I_)
L_oo

0

+ k(x,_)

dz

;Ox
dx

ox ' f* + f_' ox j + Lox ' f= + fl_ ox j

L

lira _ [ f2(x,z) fl(x,z)L_oo
L

0

by virtue of the boundary conditions. Next

Oz ' .[3 + f l , Oz J lira f_
L_oo oo

s_O+

L

Similarly

O.

--O-_-z' fl + f3, OzJ 0

where we have used the vanishing boundary conditions at x -+-oc and z oc. As
for z 0 we note that

f_ k(x,_)f_(x,_) d_ <
O(2

and as z _ 0+ since 0fl L 2C [<]

f_ Ifl(x,_)l 2 dx
O(2

< <If_(z.,z)l2 dz If3(x,_)l _ d_
O(2 O(2

If_(z,0+)l 2 dz < oc
O(2

10



and

/I.f_(x,_)l _&. _ o as _0+.
(DO

Hence it follows that A is dissipative and has a dense domain, and A can be closed

with the closure defined by

A (A*)*.

But using the usual arguments involving distributional derivatives, it is readily seen

that:

A* -A on the domain of A

and

Hence A is dissipative and hence is the generator of a contraction 6_-sernigroup which

we shall denote by 5'(t), t _> 0. We hasten to remark that

(S(t)) 1 S(t)*

and hence S(t) becomes a group by defining

s(-t) s(t) 1

and of course

IIs(t)ll 1 for each t, -o_ < t < o_.

What is important for us is to note that the point spectrum of A is empty. (A

has no eigenvalues.) The resolvent set of A is the set of those complex numbers ,k

such that the nonhomogeneous equation:

,k9 - A9 .f

has a unique solution for every .f in H, and we use the notation

From the dissipativity of A, it follows that the resolvent set of A includes all A such

that Re A > 0, and we actually have the construction

(a, A) .( s(t).(dr, aea > 0.

In fact it can be recognized as the Laplace transforrn version of (2.1). Let

fl .gl

.f /2 , .g .g2

.f3 .93

11



Then (assuming that f is such that g is actually in _D(A) ), we have

0

g3

where ¢_(x', z, A) is the solution of

Ox

-- Ctoo (QZ2

Ctoo OQ:L,2

A(,_,z,z), -_<:_'<_, 0<z<_.

Resolvent

To evaluate the resolvent,

for .f(', ")in L2 [/_], we define (in the usual sense):
L --J

it is convenient to work with Fourier transforms. Thus

F j_000 " ,
.f(i_, i_) _ _1_ _f(x,_) dx d_,

oo

Flfoodx <
oo O-

-oc < wl, w2 < oc. (2.7)

Also since for cr > 0

c _ I/(z,z)l dz dz

- I/(z,z)l 2 dzdx < oc,
O- oc

we can also define the Fourier-Laplace transform

/((.J_,[._) _ ia31£ dx _ _f(x,z) dz,
(x)

, #>0,

In particular we see that for f in _D(A),

fl

A

f_

f

Reff > 0. (2.s)

12



lira #.A(_I, #) /_
]_ _ (:X) (X)

which we can also express as:

(_ _Cd1£ fl(z, 0+) dz

1 f_ ./1(i<, i_2) d_2.2re oo

Let

Then noting that a.e. in x:

g Af.

fo°° fo°°Oz dz -fl(z, 0+) + ice2 _ j2(z,z) dz

we have:

0

fl

H A

A

where H is the multiplier matrix:

0

0

_ _ io21x /"
jI(X, 0+) do?

O(2

H

- 2U icu1

icJ1

icJ2

0 0

0 0

Note that we can use (2.11) to define A as a "multiplier" operator. Moreover

)_f - Af g

(2.9)

(2.10)

(2,11)

(2,12)

becomes

and hence

0 (_3- H)/+

f

0

0

x) iwl x #jI(X, 0@) do?
O(2

13



becomes

./ + (t&- H) 1

0

0

fl(icJ1, icu2) dcu2
oo

(t& - H) 10. (2.13)

Noting that

(lh - H) 1
1

d(t)

t 2 tCl/ay 1 tC2iC.d 2

lieu1 12 + 2lUicu1 + c2_ 2 C2(..dlt..d2

--t/cJ 2 C2 (..d1(..d2 12 + 2AUi_zl + cl_z 2

where

2 2

7z 0 for A_ziw, wreal,

we have, writing p in place of ice2 •

/
3
L ,
L

3
l (l 2 + 2Uiwll + clw 2 - C2p 2)

where .Ab is a function of iwl defined by

.Av(/Cu1) lira #.A (/cu1, if)

, Re/z> 0 (2.13a)

1

14



We should also note the relationships:

fl(x',z) A f2(_,,z) dy - .q2(y,z) dy
O<9 O<9

and when g2(Y, 0+) is defined:

/ ffl(z, 0+) t f2(g, 0+) dg - .92(9,0+) dg.
O<9 O<9

We know of course fi'om the general theory that /_(t, A) is defined for t not pure

imaginary. But (2.13a) (2.13c) may well continue to be defined for t imaginary as

well for some g since the range of

is dense in 7-{. Indeed if

then

icoI - A)

d(a) o,

-2UiWl -I- _-4w2U 2 - 4(ClW 2 + c2w 2)

2
.X

We need only require that the numerators in (2.13a) (2.13c) are also zero for this

value of t, so that .)_i defined therein with is02 in place of # are square-integrable.

15



Spectrum of

The resolventof A is clearly not compact being characterizable as a "multiplier"

operator. Hence we cannot expect that A has eigenvalues. In fact the point spectrum

of A is empty, and it has a pure continuous spectrum: Re A _< 0. Again this follows

from the "multiplier" characterization. Indeed

Af _f

yields from (2.13a) that

./1 (ia31 _ i_2)
-i_2 c2 .)_lb

(/_z + 2z/ia31/_ + 61G12 + 62G22)

and integrating with respect to cc2 yields:

./lb ./1(i<, i_2)d_
O<9

Hence .)_1is zero also, and so is f, in turn.

o

Velocity Potential

Given the semigroup solution

F(t) S(t) F(0),

where F(t) denotes

F(0) • Z_(A)

k(t,x,_)

£(t,x,_)

we can relate the solution to (2.1) in the following way. Define the velocity potential

¢(t, x, _) by:

O(t,x,z) O(O,x,z) + fl(u,x,z,) do- (2.14)

where 0(0, x, z) is required to be such that

0¢ 0¢
Ox' Oz • L2L/_+j.[23

16



Then we can calculatethat

020
+ 2U

Ot 2

020
OtOz

Hence

We define

so that

Similarly

Hence

We define

and hence

020 020 Of 1 Of 2

OtOoc OocOt Ooc Ot

at _ f2 o.

oO(o,x,_)
OX

f2(o,x,_)

o0
A.

Ooc

020 020 Of 1 Of 3

OtOz OzOt Oz Ot

at _ £ o.

oO(o,x,_)
OZ

f3(o,x,_)

o0
Oz

Hence it follows that O(t, z, z) satisfies

.

020 020
+ 2U

Ot 2 OtOx
(1 - y_2)_L 020

0o_.2

with

0(0, z, z) given

+

+

o£
Oz

(2,14a)

(2,15)

(2.16)

0 t 00--7O(t,z,z) given fl(O,z,z) (2,17)
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o4&.(t,x,_,) o f_(o,x,_) (2.1s)

o4&(t,x,_,) o £(o,x,_) (2.19)

where

F(o,x,_)

fl (0, z, z)

f2(0,x,_)

f3(0,x,_)

• _(A).

Also we see that the solution is unique, subject to the initial conditions (2.16) (2.19)

and the boundary conditions imposed in describing the domain of A. Note also that

from (2.14a) we have

Of 2 O OO O OO Of 1

Ot Ot Ox Ox cgt cgx

Hence

f_(t,z,z) f_ Of2(t,y,z) dy (2.20)oo Ot

Kutta-Joukowski Condition

So far we have not addressed the Kutta-Joukowski condition. In view of (2.14)

where we may think of fl (t, z, z) as the time-derivative of the velocity potential, and

f2(t, z, z) as the derivative

o,(t,x,_)
Ooc

we may state the Kutta-Joukowski condition as

fl(t,z,O+) + Uf2(t,z,O+) 0 at0_' b-

0 at 0_'_> b. (2.21)

18



We may then include it asa restriction of the domainof A:

D(Ao) C D(A)

D(Ao) [f l f c 2)(A) and f satisfies (2.21)]

dof dr.

The restriction A0 thus defined still has a dense domain and is of course dissipative

thereon but the closure of A0 is readily seen to be A.

We can also give a "dynamic" Kutta-Joukowski condition in the following way.

The acceleration potential defined by

o (t,x, )ot + u

can by virtue of (2.20) be expressed in the form

The Kutta-Joukowski condition can then be expressed entirely in terms of f2(t, oc, z)

as a "dynamic" condition since it involves the time-derivative. Thus _b(t, 0_',z) defined

by (2.22) is required to satisfy

0 at x -b and for x>b.

We shall refer to this as the "dynamic" Kutta-Joukowski condition.
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3. Solving the Boundary Value Problem: Possio's Integral Equation,
Laplace Transform Version

In this sectionweobtain onesolution ¢(t, x', z) to the boundary-value problem:

02¢ 02¢ 02¢ 2 02¢
at2 + 2u _(1-M 2) + (3.1)OtOx _ %00z2

satisfying the flow tangency condition, the Kutta-Joukowski condition and the far

field conditions, but without regard to any initial conditions.

We begin with the construction for a particular solution of (3.1) due to K/issner

[5, p.7 ] (see [18], for a direct proof that (3.1) is satisfied), using doublets at the

source:

//C'1 b d_ dr l dx'
¢(x, y, z, t) 4re b oo

I m' m _ _//x'2+( 1 M2)((Y rl)2+ z2)

, 0 A@, rl, t+ U(1 M 2) U aoo(1 M 2) )

a_ _/x,_+ (1- M_)((y- _)_+ _)

where A(_, 71,t) is the doublet intensity on the airfoil which is to be determined from

the boundary conditions. Note that

¢(x,>-_,t) -¢(x,> _,t).

And further,

Since ¢(x, y, z, t) does not,

¢(x,> 0+,0+) 0.

in our case, depend on y, we have:

1 b d_ dr l dx'
¢(z', z, t) 4re v oo

• _ [A _, r], t _ { @ x' _/x'2+( 1 M2)((r]2+z2)( U U( 1 M2) aoo(1 M 2) )

o_ [ _/x,2 + (1- v_)(_ + _)

where A(_, r], t) does not depend on r] either, so that we may denote it A(_, t).

(3.2)

Initial Conditions

We note that (3.2) defines the initial (t 0) values of the velocity field. It is easy

to verify from

A(_,t) o, t< o

2O



that

4(x,_,0) 0

from the fact that the set

_(x,_,0) 0

3,5'I < 3_'--_

-(x-_) x'
+

u u(1-M_)
is actually empty, fox M < 1.

Since

,_a(x,t)
Oq t) z 0OZ _(X, Z,

we have from (3.2) that

> 0

fiE'1 b d_ dr l dx'
Wa (x, t) 4re b oo

0 2 [A _5, t _ + _'g u(1_2)

a_2 l _/x'_+ (1-M_)(_ + _)

,2 )
4x +(l_/2)(r/2+z 2)

(3.2a)

z 0

Unfortunately this is as far as we can go in the time domain. We therefore invoke

either Laplace or Fourier transforms. Traditionally the Fourier transform is preferred

because one may think of an "oscillating" doublet corresponding to an oscillatory

downwash input. The first such derivation is due to Possio [2] leading to the Possio

integral equation, the most lucid derivation of which may be found in [4]. As we show

later, the Laplace transform can formally be obtained from the "oscillatory" version,

and also vice versa. Here however we shall actually derive the Laplace transform

version of the Possio equation, emphasizing the role of initial conditions. It will turn

out that this is actually more useful than the time-domain solution since generally

the primary interest is in the stability of an aeroelastic system [1]. A Laplace trans-

form version is given in [11, p.3] but it involves divergent integrals which must be

interpreted carefully. In fact the author derives a formula ([11, p.4, eq.31), for the

initial conditions therefrom which is invalid in the present (2-D) case.
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We note that

A(¢,_-)

Let

u u(1- M_)
Then since we must have that

07

+

T<O.

_/x,2+ (i- M2)(r_+ _)

t - a > 0 forallt>O

we need only consider
a < O.

Hence defining the Laplace transforms:

fI(_,A) e atA(_,t) dt; _(x,z,A) e ato(x,z,t) dt , ReA>O

we have, taking Laplace transforms in (3.2):

_(z,z,A) 47r dz'. exp ,_ U(I_M2 ) U • A((,A)

0 exp (_a ¢x,2+(1M2)(,,2+z2))
_ a_(1_2) dr].

0_ _ _/x,2+ (1-M_)(r_+ _)
Making the change of variable,

(1 --M2)r] 2

c_2
, o_2 x '2 iI (1- M2)Z 2

we have:

¢2 _> 1,

dr/ d¢ , r/2
] -- M 2 r] (1--M 2)
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_/z, 2 (1_/2)(_12+z 2) )
exp -)_ +

d_l

a 2

(]-M 2)
d_

_o_(]-M2) " _ " Y-v'-G--=
a 2

(]-M 2)

_ /_ (-_) _ _

_/1 - M 2 :_/x ,_+ (1-M2)_)K0 ao_(1 -M 2) "

Hence

/ d_. A(_,;_)

exp 1 - M 2

/
dx t

which is our basic formula in what follows. Note that:

,2 )0-7Ko\ _(_-M_)

d_

(3.3)

/
A (1 --M2)Z

_/._t2 1 (1--M2)Z 2

_ (_l)Kl(_/ff:t2@(1-M2) z2)am a_(1 -M 2)

Z

_/._t2 I (1--M2)Z 2

(3.3a)

We invoke next the boundary condition
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Denoting the Laplacetransform

fo°_e at Wa(X,t) dt by @a(X,A)

and noting that

f0 °°

0
c at __ O(x,O+,t) dt

Oz

we have from (3.3) that

1 lira /_d_ A(_,A). 1 /_ (__( y ))_(x,;_) 2_ _o+ _ _ exp 1-_ (x-_)

o_---_Ko k _(1-M2)) dy
(3.4)

or, alternately,

lira /') A(_,A) d_
z_o+ b 27c x/1-M 2

exp + _y 1_M--------5

o_---_Ko _(1-M_) _/Y_+ (1-M_)_ dy

lira 1 /'_ d_z_o+ 2_ A(_,a) _/y_M2

aoo

(3.5)

where we note that

0 2

Oz2 Ko(")
_2

aoo
;_ ,/_ + (1-M_)_)No ao_ (1 -M 2)

(1--M2) 02 ( "_ )
- -- I<o _/y_+ (1-M_)_2

Oy 2 ao_(1 -jlLt2)
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where we have used the identity [12, p.79]:

<(x) -K_(x) Ko(x)
X

K;(x) K_(x).

Relation to Pressure Distribution

The acceleration potential is defined by

_(z,z,t) ot + u o---_

Denoting the Laplace transform

we have

since

fo°_C at _(x,z,t) dt by @(x,z,t)

0

+(x,_,a) a$(x,_,a) + u _$(x,_,a)

,(x, _, 0+)

Using (3.3) for _(x,z,l) we obtain

_(z, z, _) U 1 f',

O.

0
-- Ko
Oz

--a(x- _) _ (x - _) ]
u + u (_-_7) ]

de A(¢, a) exp(a(<K-_) (_-M2)M2)

-I Mz

U a _(x- _)_+ (I-M2)_]K_ M V (I-M_)) •

We see that for any c > 0,

-I Mz

U K_( Ma '/(x - _)_+(1-M_)_)u (1-M2)
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for any c > O. Further for c and z small enough,

;,x 1
can be replaced by

utl-M _)

Hence for c and z small enough:

u 1 f_ (1-M2)za_(x,_,_) (-1) 2_ _ _ _ + (1-M_)_ d_ A(x,_)

U_d tan 1 do-.

Hence it follows that

u A(x, _).lira_(x, _,_) (-0 7z_O

The pressure distribution defined by

kP(x,a) (-p) lim [!_(x,z,%)- !_(x, -z, %)]

(-p) lira [!_(x,z,%) - !_(x, -z, %)]

uA(x,a)p.

Hence

zxP(x,_)
pU

In particular, by the Kutta-Joukowski condition we must require A(z, t) is continuous

at x b- and
A(b-, %) O.

26



Possio's Integral Equation

To derivethe Laplacetransform versionof the Possiointegral, webeginwith (3.4)
where

exp u(1-M_) oy---5 Ko _o(1-M_)

z

O0

u(1-M_) f_ exp u(1--M_)

o ( _ _/y2 + (1--M2)Z 2 )
dy

(_ (x-_)-exp U (_--M_ )• K1 _(1-M2) _/(x- _)2+ (1-M_)_

(x-_)

A

u(1-M_)

x

exp

OO

+ U2(l_M2)2 I (x _) ._y

• K0 _0(l-M_) ,/(x - _)2+ (I-M_)_ dy

which as z _ 0

kU(]_j_2)) /_1 (1__3/]2) Ix

u(1-M2) exp u(1-M_)] Ko _(1--M_) Ix- _1

+
12 ly l
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Hence(3.4) canbe expressed:

97rl vA(E'A)fv_=_2 exp( -A(z-E))U

A

u(1-M_)

1

t2 f(_:)(exp ty+ u2(1-M_)_ u(1-M_)) '_ ( tlyl

exp u(1-M_)Ko (I-M_) dy
_00 I_00

f(x _)

_o_ exp

ty tlyl

(3.6)

v A(E, t)
27c f'v dE

_(]---M--_) ) I_U(_]_12)

L

r (_ _) ty t(x - E)
_o_ exp U(I_--M2 ) u

° ) (1-M_) \ u(1-M_) ]]

t Mix- El

(3.7)
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We can simplify this a bit further by noting that [13,p.708]:

0 _,y _,lyl u _ log (1 +

Hence finally we have:

where the kernel G(l,.) is defined by:

G(_,y) _ u y (1-M_) lyl exp (1-M_) y

(1-M2) ly exp (1-M2)

y lo-

v _ (1-M_) ] exp

- _l°g( 1+_ ])
do-

(3.9)

The integral in (3.8) has again to be interpreted in the Cauchy sense.

For M 0, (3.8) reduces to

_a(X,a) 2_ bA(¢,a)C(a,x-¢) de

where

_0 00

1 A2 c a_/u Io-- Yl do-
C()_,y) Y U2 log lYl

c Chi + Shi
y u _ •

Fox- the definition of Chi (.), Shi (.) see [13]. This is a known result fox the "oscillatory

case": /k icJ; see [3,4,5]. Note that unlike the "oscillatory case" we do not use

divergent integrals and "retain only finite parts" as in [4].
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2_ CTrt aT']_

We do have that

_a(x, _) +
0

u _ _a(x, a)

0_0(x,0,a)
OZ

lira A(_, t) exp
z40 2_ _-2-_2 b (1-M 2)

02 ( "_J_ _/(2:--_)2@(1--j_2)Z 2) d_d_---_K0 u(___2)

which we could use in place of (3.8) since the left. side is given, but we cannot take

the limit inside (in the integrand) because it leads to a kernel with a singularity of

1

(x-_)2

and the corresponding Cauchy integral is not defined! This is even more evident for

M 0. Solving for @_(z, A) essentially "smooths" this to make the singularity of

order one: that is,
1

Possio's Equation: Oscillatory Case

We can obtain the "oscillatory" case from (3.8) as follows. Let

_ga(2;',t) @a(2;',iCdO)C ia_°t, t > O, CUoreal _z O.

Then

Hence (3.8) yields

_(x,_)
_(z, i_0)
1 - icu0

2_ _i(_,a) G(a,x - _) d_.

Hence the right side has a simple pole at t icu0. We note that G(t, .) has no poles

on the imaginary axis, if we omit zero. Hence

1 - icu0

3O



Substituting and letting t --+icuo, we obtain

1 /'_bA(_,i_o)G(i_o, x - _) d_.wa(x, icuo) 2_- (3.10)

This is the Possio equation. See [3,4] where Hankel functions are used in place of

the Bessel K functions. Conversely given (3.10), we may formally replace icu by A to

obtain (3.8), provided the kernel is analytic in the right half-plane. In other words,

we may replace icu by t in the oscillatory Possio equation, and we could get (3.8) in

this manner from the oscillatory versions in [3,4] using the Bessel K functions.

Existence and Uniqueness of Solution

Uniqueness

We begin with Uniqueness. Suppose then that for some nonzero t, Re t _> 0, (3.8)

has two solutions in L _ _, for some c, with the property that each vanishes at 1-.

Then the difference, denoted 4(. , t) will satisfy

1 jF G(_, _,-_)A(_,A) d_, Ixl< b. (3,11)0 27r b

Going back then to (3.3), _(x,z, t) will satisfy the Laplace transform of (2.1),

+ 2ua 0,  L(1-M (3.12)0z _ + a°_ 5T "

Moreoever the _(.) satisfies the boundary condition

0_ (x,0+,a) 0, Ixl< b.

Hence as we have seen

satisfies

0$
F

0$

AF AF.

but the point spectrum of A is empty. Hence F 0, and _(.) 0, proving uniqueness

of solution to (3.8). In other words the uniqueness is a consequence of the fact that

A has no eigenvalues.
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E._istence

The question of existence (or solution to (3.8) for each t, Re t _> 0) is not an

idle one the existence usually comes with some means of constructing the solution.

This is indeed the case here, as we shall show, drawin_ on the work of Tricomi [14]

and Sohn_en [15] on the airfoil equation.

We begin with some Lemmas.

Lemma 1

Let f C LP[-b, b] (L p for short in what follows). Then the finite Hilbert transform

H, defined by:

H.f g

1
f(_) d_, a.e. Ixl < b (3.13)

where the integral is defined in the Cauchy sense, defines a bounded linear operator

on Lp into Lp for any p > i.

Proof

Titchmarsh [16, p.132].

Lemma 2

Let g(.) C L°°[-b,b] (L °° hereinafter). Then

/_.q f

,,x,
defines a linear bounded transformation on L °° into L_ .

a.e. Ixl< b (3.14)

Proof

Sohngen [14], Tricomi [15, p.175 ct scq.].
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Lernrna 3

Suppose g C L °°. Then the integral equation:

is satisfied by any f(.) of the form:

f(z)

Hf g

C

(_g)(x) + (3.15)
_//_- __ X2

where c is an arbitrary constant. Furthermore if/_g is bounded at z b-, then/_g

is the only solution with that property.

/_c_'tarlg

(3.15) enables us to construct solutions of (3.12) which do not satisfy the Kutta-

Joukowski condition.

Proof

Sohngen [14], Tricomi [15].

Corollary

As an application of Lemma 3, consider the example (setting b 1):

1 f_ < 1 (log(1+ x) - log(1 - x)) Ixl< 1.g(x) 2_ 1 (x - _) 2_

It follows that

Let

(_g)(x) 1, -1 _<x _<1.

g+(x) log(1+ x)

.g (x) - log(1 - x).

Then straightforward analysis shows that

(_g+)(z) --, 0

Hence it follows that

as z ---_ 1.

(_.g)(x) -_ 1 as x-_ 1.

(3.16)

33



Lernrna

1
Suppose g(.) satisfies a Lipschitz condition for some a, +3 < a _< 1:

Ig( t)-g(s)l -< MIt-sl _, -b_<s, t_<b.

Let

Then

f /_g.

If(z)]---, 0 as z---, b-.

(3.17)

Proof

We begin by noting that if

gl(X) 1, Ixl< b,

then

1 9
_/÷-x . (_)(_gl)(x) _ 7 v0 77

and _0asz_b-. Now

and

I_1 (b {) 1/2 d{ < O0I¢-x • -
b

for I:rl < b, by a simple application of the H6lder inequality, for

a-1 2

It follows that

and hence so does

(/_g -- /_gl)(2:) ---+ 0-- as z _ b-

(_.g)(x) --, o as x--, b-,

as required.

d_
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Corollary

(_)(x) --+ 0 as x--+ V-

if g is absolutely continuous with derivative in L °°. Moreover under this condition,

f Rg

is the only solution of the integral equation:

Hf g

such that f(.) is bounded at z b-.

It is convenient to rewrite (3.8) for a more detailed analysis of C(%, y). Since it is

only a matter of scaling we will take b 1, from now on. Let

_(x,;_) _(x,;_) exp U(1-M_)/

3_(x,;_) A(x,;_) exp u(1-M_)/

Then (3.8) becomes:

1

{ v_-M227r

+

K_(_) _K_(_).

_:_ (1-_2) I(x- _)1 (x-_)

)
2__ _-5 exp 1--M_ K0 1-_z= It-x+_l dt .

(3.1s)
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The crucialpoint of departureof our analysisis to rewrite the kernelin parenthesis
in the integral aboveby

lx/FJ-M-ff-Ms 1

271- X --

+ Go(),;x-_)

where, defining

_11(_) Kl1(_)- 1

_KI(_)- 1 (3.19)

we have that

_0(_; _/) _ _11 lyl + Ko lyl

2_ u(1-M_) _ 2_4Yz-2_ u u(1-M_)

1 A2 foo
27rX/_-M 2 U 2

-At AM - Yl] dr.(U(1-M2) D K° (U(1----M2) [texp

/

(3.20)

Define the operator G0(A) by

G0(A)/ g, ReA__O

/1 G'o(A, x-_) f(_) dE, Ixl < 1. (3.21)
"g ('_') 1

4

Then G0(A) is readily verified to be a linear bounded operator on L _ into L °°, and

(3.10) can be rewritten in operator form as:

_b(.,A) H(A_(.,A)) + Co(A)A_(.,A). (3.22)

What we have done is simply to isolate the "singular part" of the kernel as the first

term 3).

From (3.13) we can obtain our first breakdown of the solution by operating on

both sides by/_ and obtaining

_(.,_) A(.,a) + _Co(a)A(.,a). (3.23)
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Existence Theorem

We can now prove existence of a solution of (3.23), which is actually an easy

consequence of (3.23) where the main feature to be noted is that/_C0(A) is compact
4 4

on L _ into L _ . By the uniqueness of solution argument we see that

4

(I + l_Co(._))A 0 for some A in L _

would imply that

HA + Go(_)A 0

or that (3.11) holds. But in that case we have seen that A must be zero. But

/_G0(A) being compact by the "Fredholm alternative" we have that (I +/_G0(A)) has

a bounded inverse. Hence from (3.23) we have that

A(.,A) (I + RCo(A)) 1R_(.,A). (3.24)

Or, we have both existence and uniqueness of solution.

A Constructive Solution

We can obtain a constructive solution for IAI small. Thus from (3.13) it can be

seen that for each M < 1,

IlCo(_)ll-_ 0 as I_1-_o. (3.25)

Hence for fixed M,

II_Co(_)ll< 1 for I_1< I_MI. (3.26)
Hence we have our first result on existence:

Lerrtrrta 5

ForeachM, 0 _ M < 1,wecanfind I_MI,0 < I_1 < o_,suchthat (3.15)has a

unique solution given by

_i(.,;_) (i + _Co(;_)) 1_(.,;_)
oo

_(.,;_) + _(-1)_(_Co(;_))_(.,;_) (3.27)
1

forall I_1< I_1.
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/_emark 1

In particular we have from (3.27) that for A O:

A(.,o) _,>(.,0). (3.2s)

Remark 2

In [3] there is mention of an expansion given by Dietze [6] without proof. It is not

clear to this author whether it is the same as (3.27) or not. Note that the expansion

in (3.27) is r_ot in powers of M.

Remark 3

Since the major interest in the use of the Possio solution is in the range of values

of A such that

k<l

where

U

the expansion (3.27) is not totally void of value and we expect that taking the ex-

pansion to the first term

AI(. ,A) _,_(. ,A) - _G0(A)_,_(. ,A)

may be useful with further simplification of the kernel G0(A) as well.

Kutta-Joukowsky Condition

We shall assume from now on that @(. ,A), and hence @(. ,A), has a bounded

derivative in [-1, 1]. It would then follow from Lemma 4 that the function

(_,_(.,A))x -_ 0 as x--, _-.

We shall now prove:

Theorem 3.1

4

Let f C L _ . Then the function

[RG0 (A).f ] (x) 0 as x-* 1-.
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Proof

Let us follow the breakdown of G0(A) into the three terms as in (320)

also use the abbreviated notation:

t M t
• /_1

u (1-M2) ' u(1-M2)

Thus let

C0(A) C0,1(_)

with corresponding kernels

+ c0_(_) + c03(_)

Let us

x/_ -M 2 1
Co,1 (.X,y) _11 (_71Yl) - (3.29)

27r y

1 .X

CO,2()',y) >___M2 y Ko(_lYl) (3.30)

1 _2 f0oo C A'tCo,3(._,y) >v1-M2 u= Ko(_lt- yl) dr. (3.31)

4

Define now the operator "]Pull(t ) for each t _> 0 on L _ by

7Ell(t)f g(t, .), t >_ 0

rl Rl1(7 Ix {- tl)
9(<x) J f({) <, Ixl < 1. (3.32)

4

Then P_ll(t) is linear bounded on L _ into L °°. This is because the only singularity

in the integrand is where

z-_-t 0

but we can use the known expansion for/£1 (z) at z 0 and obtain:

Z_[I(Z) - 1 [1( 1log2] P_ez > O. (3.33)z 2Euler Gamma- 1) + 7 , -
Z

In particular we recognize that

C0,1 (-_) "P_11(0)

and that the corresponding kernel G0,1 (l, y) is such that

C0,1(,_ , --y) --C0,1(,_,y), y > 0
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d f_11JY) -

dy dy _KI(_Y)- '
y>O

1 "727 +

1

y2 [[1 - 7Y/_1(TY)] - 72/_0(7Y)]

which at y 0 using the expansion (3.33)

s log 7Y
{(2 Euler Gamma - 1) + _ 2 72 log 7Y

which is in LP[-1, 1] for p _> 1 arid hence it follows that "Pv11(0)f has an L 1 derivative

in [-1, 1] arid hence by Lemma 4 we have that the function

[_'R_11(0)f](x ) ---> 0 as x---> 1--.

We shall abbreviate TEn (0) to 7Ell in what follows. We note also that for _ > 0, using

the expansion at y 0,

Jt:_11(_Y) _Jt:_11(_Y) _ 72y (2 Euler Gamma - 1) + _ --
Y 7Y

we have the estimate, as a function of 7 that

IIP_1111 o[ r21log rl ], as ?_ ---_ O. (3.34)

To handle the remaining two terms (3.30) arid (3.31) we define the operator/C(t)
4

onL _ for each t _> 0 by:

Jc(t).f g(t,.)

i rl

9(t,:l;') 271-_ J 1K°(71t-x<l) f({) d{,

4

Then/C(t) is a linear bounded operator on L _ into L °°, arid we have

._ /_2 foo A't

Go(a)f 7gnf + -_ 1c(o)f u 2 Joe 1c(t)f dt.

Ixl 1, (3.35)

Let us consider the second term. Let g /C(0)f. Then integrating by parts, we
have:

g(x) 271- _'_--M2 /_°(_/(1--x))F(1) 271- _ 1

1
+ ('P_11F) (x), Ixl _ 1, (3.36)

(I-M_)
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where

/F(x') f(_) d_.
1

We define a new function K(% .), for each 7, by

1 -___ /' __11_+_ Ko(7(1-_)) d_,/4(%x) _2 +x 1 -_ _-x

Then it is immediate that

]_ d-M2/4o(7(1 - •))
1

(1 -M 2)
/4(> .)

(3.37)

Lernrna 5

/4(7, z) _ 1 as z_l- (3.3s)

Proof

/4o(7(1- _))

is Liptschitz in I_1 < 1. Hence

+ log(7(1 - _))

1-z fl ___ (/40(7(1__)) +logT(1__)) d__--77 1 7_ _-x

and so does

By the Corollary to Lemma 3 we see that

log 7 d_.

/4(7, z) _ 1 as z_l-.

0 as x --+ 1--

Hence

F(1) /4(7, .) F(.) 1
R [/c(0)f] + 1_[']_11/U']. (3.39)

(1-M_) (1-M_) (1-M_)

where every term is bounded at 1-, as required.

Finally we consider the third term in (3.31). The corresponding operator is given

by

__2 foe Mt

Go,3(A)f _Z Jo e 1C(t)f dr.
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Let

Then integration by parts yields:

g(t, .) l_(t)f.

1 1 1 1 fL F(_) d_g(t,x) 2_ 4f-M2 Ko(_(l+t-x))F(1) 2_ _ 1 x-t-¢

1 1
(_11(t)F) (x), Ixl _ 1, (3.40)

71- V l-:vl _

where

F(x) f(_) d_.
1

We carry out the integration with respect to t, term by term. Let 91 (t, x') denote the

first term in (3.40). Then

m _ 2

riots a't (t,x) dtU2 91

which, by integration by parts,

-A 2 1 F(1) e _,'t
U 2 27r x/_-M 2 K°(7(1 + t- x)) dt

U 27r
_,t _Kl(_(l+t-x)) dt

:_ F(1) _ Ko(_(1 - x))
U 27r

The third term in (3.41)

U 2_

dt

l+t-x
Ko(_(1- x))

a't /_11(7(1+t-z)) dt_. (3.41)e
l+t-x /

U 27r
_,__11(_(1+t-x)) dr, Ixl< 1

l+t-x

U 2_ t
dt

U 271- (1 x)

where

T'11(t)
[tlKl(Itl) - 1
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Hence defining

the third term can finally be expressed as:

A

Now

G t/M I'll(t) dt c t/M d
d--/ [-Ko(t) - logt] dt

_O °°

1 c t/M [--Ko(t) -- lo_t] dt
M

_O °°
c t[-Ko(2W/t) - log 2W/t] dt

(-1) log[1 + _]v_ -M_ M - logA// + log2

1 [( 1_x/T-----A_-ff) log A// log1- T-
(3.42)

and is <0for 0<M< 1. Hence

j[o°°G t/M T.11(t ) dt j[o°°G t/M (__T.11(t)) dt

- (1- l_x/-i-7-M--if) log

as M ---_ 0

oD] as M ---_ 1.

43



Hence for 7 > 0 (equivalently A > 0 )

F(1)q3(x) _ _ IF(1)I_' _ _/_(-__(0) dt

M 2 1
_2_/u IF(1)I log -- as M _ 0 (3,43)

Y -7- 2M

eXP_u(l_M_) IF(1)I as M_ 1 (344)

Note also that the function q3(') does not depend on f(.). It is also immediate that

(/_%) (x) O, :_' 1-.

Next we need to consider the first term in (3.41). Letting

j_0 °°

A v__M 2 F(1) e _'t dt
ql(x) K 2_ 1 + t - x , Ixl_<1,

we need to calculate

For this purpose we note that

/_ql •

l 1+_ 1 d_ _r _+t t>0.1 _ _-t-1 _-x x-t-1 t '

Hence we see that

-_ F(1)/_-x
(/_ql) (X) U 71- V'_ _._'

h(A', x)

where

Hence

h(A, x) c At 1 dt.x-7-1 (3.45)
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is givenby the function:

F(1) K(%x) + -v_.x h(_',x)U 7c

A

+ y F(1)(_q_(.))(z). (3.46)

Lernrna 6

Let

Then

/5-

(3.47)

Proof

1 -x h(A,x) -1 _+x e at 1 +t
_r + x _r x t + l- x t

-2 1

dt

fo ° 2 _ dtc at (1 x) 2+t2(1-:r) l+t 2

X ---+ 1-- ,

fl F(_) d_ f, t
1 :c'--t--g _ 1 Z'--t--_

Combining with Lemma 5 we obtain:

Corollary

The function defined by (3.46) goes to zero as :r _ 1-.

Next let us tackle the second term in (3.40). Here we note first that we can write:

F(_) d_. (3.48)
/1 F({)d{ +

t z--7-_

The first term on the right can be expressed:

Jt/11 F(_--_) d_
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which in turn can be expressedas

q(t,x) fll F(_- t) d_,-(;-

defining

Hence

F(_) 0, I_1> 1.

1 1 .) (x) (1-M2)1_,/1-:-_ q(t,

Let r(t,x) denote the second term in (3.48). Then we can write

t F(1-t+_)_.(t,x) d_
x-l-a

and

1 1

27r x/q-M2
__ _[_.(t, .)](x)

1 1 2 1 -x ft
- _ Jo do-27r l_-M27r

F(1 - t + _) d_

x-l-a
F(1 - t + _) d_.

Hence

f e xtR
U_ _ Jo _

is given by the function

d_] dt

j_o °°

,_2 1 c x't F(x - t) dt
U 2 1 - M 2

+ U 2 1 -- M 2

which upon integration by parts in both integrals

Izl < 1 (3.49)

[ S ]-A -F(x) + e x'(_ _) f(o-) do-
U 1

U

and clearly goes to zero as x --* 1-.
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Finally let us considerthe third term in (3.40)and calculate

[ ]G A_t

u2(l_M2) 7_11(t)F dt

Let q4(') denote the function inside square brackets

1 ] F({) dE G _,'t Rl1(71 t - (x-g_)l)

q4(_') 1 27i- ._/_-M2 _ __ (._. _ _)

f ] L(x- {)_ dE
A e F(_)

Al(x ¢)
1 271- U 2 X/_--M 2

where,

L(x) f_
X

dr, Ixl < 1

dt

/_ (TltlKl(Tltl) - 1) d t
dt + c _'t

x t

where the first integral, denoted c(M), is given by (3.42). We can decompose q4(')

correspondingly

q4(x) q4,1(x) [ q4,2(x) (3.50)

where

q4'l(;L') 27f k/_ --j_//2 _ 1F(_) CA{ dE (3.5])

1 A2 1
A_t

q4,e(X) c
27c U 2 X/'-]-M 2

/ FP_ F({) dE
1 (x ¢)

_2
-- log 7
2

It is immediate that

(i_q4,1)(:L') ----+ 0

_,,, (_ltlKl(_ltl)-t 1) dt (3.52)

as _ _ 0. (3.53)

as x ----_1-

as x ---_ 1-.(nq4,2)(¢) -_ 0

-- c _'t 1C(t)f dr)

Hence, finally:

R
U 2
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is given by the function

-)' F(1)[_:(%x)+ i_(),',x)]
U

[ F-;_ F(1) K(%x) - ;_ -F(x) +
u _ c :''(_ _) f(o-) do-]

A [f_e a(1 _)f(o-)do-] )-_(A',:r) + (Rq4(.))(x).U

Hence

:/oo ]U2 e-A'tlC(t)f dt (3.54)

where

is given by the function

/C(0) f U2 e a't 1C(t) f dt]

u(1-M_)
[K(%x)F(1) F(1) K(%x)- F(x)]-

U

F-.X e _''(_ _) f(o-) do-
U 1

A )-_(A',:r) fL e :"0 _)f(o-) do-U 1

A M 2
+ [F(1)K(%z) - F(z)]

u (1-M_)

),

+ (_q4(.))(x) + _ F(1)(_q3(.))(x), Ixl _ 1. (3.55)

Using Lemma 4 (or otherwise) we see that the function defined by (3.55) goes actually

to zero as x --+ 1-. This concludes the proof of the Theorem 3.1. []
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Closed Form Solution Approximation

We now show how we can derive a closed form solution with error of the order

172 log 71 as 7 ---+0

or

IM 21ogM I as M _ 0.

For this purpose we note that by (3.55) we can break/_G0(A) as

nCo(_)f T(_)f + (nvll(0)f + nq4,2)

where the part in parentheses, as we have seen,

O[h 21og71] as 7-_0

.9 T (._ ) f

and T(.X) is defined by

(3.56)

F /g(x) -AU 1 c :''@ _) f(o-) do- UA ]t(A', x') ss c :''(s _) f(o-) do-

+
A M 2

U 1-M _ [F(1)K(%x)- F(x)]

A

+ y F(1)(nq3)(x)

+ (nq4:)(x) (3.5r)

where the last term can be simplified further, noting that

so that

where

both of which are special functions, and do not depend on f(.).

(3.59)
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Collecting commonterms, wecan rewrite T(A)f as

g(x) -aU 1_ ;(x _)f(o.) do. - _M lf(o.) do.

A h(x) fL e a'(1 _)f(o.) do- + 7MK(x)F(1),U 1

where

Ixl_<1 (3.60)

h(x) _(;,x)

K(x) K(%x) +

4

H(.) and K(.) are in L_ .

+ 4M) q_(x)

1-M 2

M_ ((_q_)(x) + 4M)q_(x)).

The main point in isolating T(A) is to exploit the fact that we can obtain a closed

form solution for

(I + T(t)) 1.

Since the additional terms in (3.56) are small compared to T(t) fox- small % (or small

M for fixed A), we obtain in this manner a closed form solution for the Possio equation

which is particularly suited to the usual range of '7 values of interest: 1'71< 1.

The reason why we can get a closed form solution for g for given f for the equation

is that (I + T(t)) has the form:

where

f (I+T(t))g

(I + T(l))f g + L q + fl£1(.g) + f2£2(.g) (3.60

f lLf -A e _''(_ _) f(o.) do. - 7M f(o.) do. (3.62)
U 1 1

is a Volterra operator, £1('), £2(') are given linear functionals and

fl h, f2 K

4

are given elements in L _ , and we can evaluate (l + L) 1 in closed form. Hence

.g ([+ L) if + ([ + L) 1f1£1(.g ) + ([+ L) lf2£2(.g )

and we only need to solve an algebraic linear equation in two unknowns for £1 (9) and

£2(9), which we can do provided of course the determinant is nonzero.

It is a little easier to proceed directly as we shall show.
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Theorem 3.2

The equation

has the unique solution given by

f g + T(t)g

f fg(x) r(x) + t' cosh?(x - a)r'(a) da + ? sinh?(x - a)r(a) da (3.63)
1 1

where r(x) is given by

r(x) f(x) + TS(r)K(x) + (_-h(x) - TMK(x))C(r) (3.64)

where the coefficients (functionals)

1

C(r) f_
1

sinh_(1 - a)r(a) da

coshv(1- _)r(_) d_
(3.65)

are given by

where the 2 × 2 matrix

C(r) D(A,M) s C(f)

S(r) S(f)
(3.66)

D(t,M)

1- g

-s(K) 1+ vs(K)

(3.6r)

is nonsingular for Re k _> 0 excepting possibly a sequence of isolated values {kk}

bounded away from zero and Itkl _ oo as k _ oo.

Proof

We begin with

f(x)

(3.6s)
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Let

f
Multiplying both sides of (3.68), by c A'x we have

A .9(o-)do- A p,(x 1)t_(x)
']_ ('_') "_ ('_') U 1 U 1

+ A/]2/V []_(x)/11CA'(x °-).3(o- ) do-

Now

_ £'(_ _).9(o-) do-1

f_ _'(_ _)9(o-)do-1
Hence we can write

p(x) Q'(x)

Q'(x)

9(o-)do-

f
1

Q(])GA'(x 1) + at/1 GA(x G) Q(O-) do-.
1

A A GA,(x 1) /_(A', X)u Q(x) - Q(1) K

+ A/I2A!cA'(x 1)Q(])K(X) + a'2_//2fL cA,( x G)Q(O-) do- _(2_')
1

f- A'M_Q(x) - A'_M_ _'(x _)0(o-)do-
1

a h(x)]-- AIQ(X) + Q(1)C A'(x 1) AI_//2_(X)- Y

Q'(x) A'q(x') + cA'_f(x')

+ Q(])GA'(x1) E--_-]L(2_')-- AtA/I2K(2_')]

+ M_A'_[L_A'(_ _)Q(o-)do-- K(x)f:_ ;(_ _)Q(o-)do-]
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wehave:

©(x) /_
1

f(o-) do-

©(x) _ _''-Q(x)

where we have used:

d_ c _'_ Q(7) d7
1 1

Hence

©(x) -

F (x- 7)©(7) dT.
1

F_'2M2 (x- 7)©(7)d7
1

+ ©(1) _

This is a Volterra integral equation which has a unique solution. In fact let

Then

FF(x) ©(_) d_.
1

F(-1) o F'(-1)
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and

yields

OY_

r'(z) f(z) -

F(x)

F'(x)

Hence it follows that

g(x)

_ /V2 2F"(x) M F(x) ,_.(x)

),'_M_K(x)F(1) + F'(1)(),_(),',x)- ),'M_Ktx))

[:: sinh _7(:r - o-)
T' (0-) do-,

F coshv(x - _)_.(_)d_
1

F coshv(x - _)_.(_)d_
1

1

_.(x) + _' f_ coshv(x - _)_.(_)d_

/, sinhV(x- _)_'(_)d_ (3.69)

where

/- sinh_(1 - _)r'(_) d_r'(o_') f (o_') ?_K(o_')

+ h(x) - v MK(x) lcoshv(1 - _)_.(_)d_ (3.70)

where we need to determine the coefficients C(r'), X(r'), where C(.), X(.) are func-
4

tionals defined on L _ by:

cosh_7(1 - _)f(_) d_

sinh_7(1 - _)f(_) d_.

c(f)

s(f)

But from (3.70) we obtain the algebraic linear equations

C(_') C(f)

D(,_,M) S(r') S(f)
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where D(t,M) is as defined by (3.67), and has a unique solution provided

d(t,M) det D(t, M)

_ c(i_)+ _MC(K)](1+ _S(K))+ _C(K)S(K)1 U
/

+ S(K)C(K)(_+ _M)

is nonzero.

We note the d(t, M) is continuous in Re t _> 0, and analytic (no poles or other

singularities in the finite part of the plane) in Re t > 0. Moreover

and hence it has a finite number of zeros in any finite part of Re I > 0, the sequence

{tk} of zeros being such that I_1 -_ o_ as _ -_ o_. it is a continuous function of

in (3.71) and for 7 0 (or M 0)

1 U

1
U 1

1

_(_)

and

U e _/u/o_(_) _ _ _(t) dt -- +

C1(._) --O OO as Re._--o oo.

Hence it follows that the {Ak} are bounded away from zero. This concludes the proof.
[]

t_crnark 1

We conjecture that d(t, M) has no zeros in any finite part of Re ,_ > 0.
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Rernark 2

Let us summarize our main result. We have derived an approximate closed-form

solution to (3.8).

where we set

xM2x )A(x,x)A(:z.,.x) exp U(I_M2 )

A(:z',.X) g(:z') in (3.69)

f(x)

Rernark 3

e(x,a) exp u(1-M_)/

For M 0 (incompressible case) we have that

T(a)

and further (3.49), (3.43) reduce to

and

.g(x)

_Co(a)

/ fro.) do._'(x) + y 1

f(x) + g/_ ,x

Hence

where

Fr'(o.) do- d_(A) f(o.) do..
1 1

_.(o.)do.

/ fro.) do.g(x) _.(x) + y

;r(x) f(x) + _ t_ , x d_(A)

This checks with the known result for the incompressible case,
next section.

(3.72)

f(o.) do..

as we shall see in the

Remark

To simplify calculation without losing too much accuracy we may take
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Velocity Potential

The Laplacetransform of the velocity potential, _(z, z, A), satisfies

0

a_;(x,_,a) - ,(x,_,0) + u_,(x,_,a) 5(x,_,a).

Solving this differential equation for _(z, z, A), we obtain

( (_;(x,_,:_) exp _;(_,_,:_)+ y exp _)o(_,_,:_)d_

where a is arbitrary. From (3.3) we see that

lira _(a,z, A) 0.

Hence

_;(x,_, :_) u exp _)o(_,_, :_)d_.

Hence in particular for z 0+,

(3.73)

_;(x,o,:_) -lffexp(-:_(x-_))2v u A_(_,:_)d_. (3.74)

Also, differentiating with respect to x:

o_;(x,0,a) 1
cgx 2 b exp U

(-1) (3.75)
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4. Subsonic Incompressible Case

We now specializethe LinearizedCompressibleFlow equations (2.1) to the case
where all the time derivatives therein are set equal to zero, yielding (by cancelling
out aoo, it being nonzero)

(1-M 2) 02* 02* 0 (4.1)
+ Oz2

but _5(.) is still a function of time, since the boundary conditions are retained: viz.,

the flow tangency condition, which then makes the boundary value a function of time

through the downwash condition, and the Kutta-Joukowski condition, which also

depends on the time coordinate, since the acceleration potential is still defined by

_(t,z,z) o,(t,z,z)at + U O,(t,z,z)&.

However (4.1) is not an initial value problem. We are satisfied with any solution. Note

that the velocity U has no meaning to (4.1), and enters only in the Kutta-Joukowski
condition.

This problem with M 0 is the celebrated "incompressible inviscid flow problem."

(See [3,8].) We need to consider it for M _z 0, and this is traditionally done through

the so-called Prandtl-Glauert coordinate transformation on the truly "incompressible"

solution for M 0. (4.1) is also referred to as the "steady state" equation since time

is not present. However it has nothing to do with "steady state" in any sense of

asymptotic behavior in time.

The main feature for us is that we can indeed obtain a "time domain" solution

unlike the Linearized Compressible Flow equations where we can only obtain the

Laplace transform of the solution. Even though no claim is made that the derivation is

new, we shall need to be precise mathematically (as compared, say, to the "standard"

treatment in [3]). We shall also present a few results which do not appear in [3] or

elsewhere.

We shall present a direct approach without recourse to the Prandtl-Clauert trans-

formation. Thus, we shall simply begin, as usual, with the general form of the solution

to the "potential equation" (4.1):

v -M2 bva(t, ) tan 1 [7 - <

1 vs-M2 tan i \ (x- d_ (4,2)

where the functions %(t, .) and %(t, .) are to be determined from the boundary
conditions.

From (4.2) we readily deduce that
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o4(t,x,0+)
Ox

O, z < -b

O, z > b + Ut

!va(t,z), Izl < b
2

l V_(t,z), b < z < b + Ut.2

Define (the "circulation")

fr(t) va(t,x) dx.
b

Then, superdots indicating time derivative,

1-[(t) o f', o,(t,x,o+) dx ;(t,b-,O).2 Ot b Oz

As usual, we now determined %_(t,.) from Kutta-Joukowski conditions. Let

riv+; oe(t, x, 0+) dx, -_ < ( < _.F(t,_) 2
Jb 0_"

Then we recognize that

F(t,¢) _v _(t,x) dx for (>0.

The Nutta-Joukowski condition

0 o_(t,x,0) o_(t,x,0)+ U
Ot Oz , z >_ b

yields

or

or,

0

Ot-[/7 o,,;:,o,,x]
0

+ u½v_(t,b+O, ( >_o

0

1 0 u
l[(t) + F(t,() + 7_(t,b+() (>0,2 Ot ' -

10 UO
_(t) + F(t,O + F(t,O ( > o,

5 2 Ot 2 0( ' -

or, we have the partial differential equation

oF(t,¢) u oF(t,¢) /"(t), t > 0, ¢ > 0.
ot o(

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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We note that

fF(<0 F(0,(-ut) + /_(_)d_ (4.S)

isa solutionof his equation for ¢ _> 0, and by uniqueness of solution of the Cauchy

problem associatedwith thisequation, the only solutionssuch that

b+¢F(o, 0 Jv _(o,x) dx, ( _>0.

In particular therefore

and hence for ¢ > 0:

Let us use the notation

oF(t, ¢) oF(o, ¢- ut)
0¢ 0¢

oF(o, ¢- ut)
0¢

%(t, b+ ¢).

0F(0,¢)
g(¢) 0¢ , -o_< ¢< o_.

Then

%(t, b+¢) g(¢- Ut)

and going back now to the Kutta-Joukowski condition (4.6), for ¢ 0, therein:

_(t) -ug(-ut), t > o. (4.9)

But

%(t,b+¢) g(¢-Ut), ¢>_0

or_

Hence for

%(t,x) g(x-b-Ut), xkb.

x- b-Ut < 0 or x < b + Ut,

we have from (4.9) that

g(x-b-ut) -1u _(ut+b+x)u

-1u _ ( t x - b)u, t>_x- bu

or_

-1 _ (t x-b)U U '
b<x <b+Ut (4.10)
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which is then oneof the primary results of this theory.
We note that the Kutta Condition at b- requires that

since by (4.3):

/"(t) + u_a(t,b-) o

O0(t,b-,O+) O iv O0(t,x,0+) 1 /"(t)dx
Ot Ot _b 0x

and (4.10a) is consistent with (4.10), upon taking x b+. In particular we have

(4.10a)

Next we exploit the flow tangency condition. We have

oO(t,x,o+)
_(t, x) o_

-1 b _(t,_)-_-__b x-¢ d_ 1 [v+_t _(t,¢) de)2_ Jb z-_

where the second term, substituting for %(t,_) from (4.10)

Hence

w(t,z) -1 b %(t,() d( + do- (4.11)
_2 2_- b x-_ _ x-b Uo- '

which is then the "airfoil" equation, a singular integral equation which we need to

solve to determine %(t, _). We have covered the necessary relevant theory in Section 3.

Rewriting (4.11) as

z ------7 x/T-M2 z-b-U_ do-- w(t,z). (4.12)

We have, under the condition of Lipschitzianness, and introducing the operator /_,

defined by (3.14), for the only solution bounded at _ b-

%(t,.) -t_w(t,.) + q(t,.) (4.13)
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wherewedefine

q(t,x) _ _ v -_ _ -x _--_ Ko.do-d_

2_C_taT'_

In the aeroelastic problem (as in [3]), the downwash function

w(t,x) -it(t) - (bx-a) &(t) - Ua(t)

where h(.) is the "plunge" and a(.) the "pitch" angle.

From (4.13) setting t 0 we obtain

%(0, .) -/_w(0, .) (4.15)

showing that the initial aerodynamic flow conditions are determined by the initial

conditions of the downwash. Our next step is to determine the circulation function

from (4.13). It is convenient to let

B(t, .)

and

so that

B(t)

and, integrating (4.13), we obtain

r(t)

where

-n_(t, .)

f" B(t, x) dx',
b

c(o) B(o)

/B(t) + q(t,x) dx
b

or_

vv q(t, x) dz

0 B(t) -

1- _;

B(o/- A 12÷ o.oo.
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which is a linear integral equation for P(t), wherethe important observationis that

where

and hence

[;t dt _1(_)

/oA Ko
(4.16)

h(A) dl(A) - B(0)) (4. 7)

yielding a "convolution" interpretation in the time domain. This is another central

result in the airfoil theory, the key being (4.16) due to Sears (see [3]). However this is

not of particular importance in the Laplace transform theory for (4.13). Thus Laplace

transforming (4.13) we have, using (4.17) as an intermediate step:

or, using (4.17),

where

_a(a, ") -n_(a, .) + ap(a)- p(0)) h(a, .)

_a(_,.) -r_e(_,.) + (_B(_)- B(o)) a_(_)i_(_,.) (4.18)

1 b-:r e a_ 1 2+Ucr
h(a, z) 7 7 7 z - b - U_ _;- d_

Z
Z

To finishthe calculations we need next to evaluate >_(t, .), using (4.10). We have

_(t,b+() U

But the time domain version of (4.17) yields

f_(t) _(t- _) B(_) d_
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and hence

%(t,b+()
--1 ft (¢/U)

_] Ijo < (t - _) B (_) d_

O, ( > Ut,

also

_(A, b + () _oo e ),t% (t, b + () dr, O<(<Ut

U

-1 <(x)(xB(x)_ B(o)).
U

This yields for the acceleration potential

b

(-n_(_, .))(x) +

(a%(a,y) - _r_(o,y))dy

using

%(),,x)

and (4.15)

(_t?(_) - B(0)) _1(_)_(a,x),

_(o, y) -(n_(o, .))(y).

(4.19)

(4.20)

We note that (3.49) is the same as (4.19) if we set the initial conditions

_(o, y) o; B(o) o

and take

f(.) -Rw(A, .)

and in fact this analysis provides an interpretation for the function r'(.) in (3.72).

Also, finally, we have for the velocity potential:

O(t,x,z) -1 f" _4_-=----M2 <2_ vB(t,_) tan _ (x- _)

d_

_t z_/7-M 21 b(t- _) tan _ (x- ¢) d_,+_ (4.21)
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where

f_(t)

-n,_(t, .)

fB(t) B(t, x) dx
b

_0 °°
_(_) _ _t_(t) dt

Note that the initial conditions are:

c _/_

0(o,x,_) -1 f" z_ 2B(o,_) tan _ d_.
2_- _ (x - _)

Hence

On the other hand

-1 f'_ zggT--M2 d_.2_ b b(0,_) tar, _ (x- _)

0(o,x,o) o $(o,x,o).

oO (0+,x,0+) _(0+, x) B(o, x)

and is not necessarily zero. Hence

_(o,x,o)
oO oO

gT_+ ot

(: B(o,x) o, if w_(0, .) 0.

To connect with the Possio solution (cf. (3.49)), we note that

%(0, z, 0) _o(O,x,o) + 0_(o,x,o)

-U

2
A(x,0) 0, if w_(0, .) 0 _(0, .).

Hence _(0, x, 0) arid _p(0, x, 0) are equal if the downwash initial conditions are zero,
but not otherwise.
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5. Solving the Boundary-Value Initial-Value Problem

Solving the Boundary-Value Problem

We first consider the problem of finding a particular solution to the Boundary

Value Problem for (2.1) without regard to the initial value. Thus let Ac denote the

extension of A where we drop (only) the condition (i) that the boundary value be

zero. Thus
fl gl

A c f g f .fe g .q2

.[3 g3

where

g

2 0

a 0 0
Ox

a 0 0
Oz

f. (5.1)

The problem then is: Given w(t, .) where fox each t >_ O, w(t, .) C L2[R1], find f(t)

in 7-{ such that

i) Acf(t) 0

and

ii)

/_ If3(t,z,z)- wa(t,z)l 2 dz _ 0,

It is easy to verify that such a solution is given by

as z _ 0+. (5.2)

fl(')

f(t) f2(') ,

f3(')

fl (t, x, z) 0

f2(t,x,_)
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where _b(t, z, z) is the velocity potential determined explicitly in Section 4, equation

(4.21), satisfying (4.1) and the flow tangency condition and the far field conditions.

We shall denote this velocity potential by _M(t, z, z) where M is the subscript to

indicate that M is not taken to be zero. We can also calculate the velocity potential

via the Possio equation as in Section 3, setting M 0 in the acceleration potential

(but retaining M in the definition of/_). As we have seen, the two determinations

differ in the initial conditions. In what follows we may pick either one and still denote

it _bM(').

We note while f(t) is not in the domain of A0, it does satisfy the dynamic Kutta-

Joukowski condition by our construction. In other words

l 0

will satisfy

Moreover we can write

z>b.

f(t) Dw(t, .)

where D defines a linear bounded transformation on L2[/_ 1] into 7-_ for each t _> O.

Solving the Combined Problem

We can construct the solution for the problem (2.1) the combined initial-

value/boundary-value problem, following the general technique outlined in [1,2,3].

We claim that the solution is given by defining:

x(t) xo(t) + t > 0 (5.3)

where

z0(t) S(t)(z(0) - Dw(O, .)) - S(t - _)D@(_, .) d_ (5.4)

(the superdot as usual denoting time derivative) which is the generalized (or weak)

solution of

2"o(t) Azo(t)- D@(t,.) (5.5)

(with the tacit asumption on strong differentiability of Dw(t, .)) with the initial con-
dition

xo(O) x(o)-
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To verify that 0;'(t) given by (5.3) is the solution sought, we have only to note that

£'(t) _o(t) + D;_(t,.)

Axo(t)

ALxo(t)

AL[x(t)- Dw(t,.)]

ALx(t).

Defining the velocity potential as before (Section 2) by

f
in the notation

and defining

k(t, .)

x(t) /2(t, .)

£(t, .)

0

&. _(0, x, z) A(0, x, z)

0

O-_ _(0, x,z ) £(0,x, z)

we see that ¢5(t, x, z) satisfies (2.1) and the boundary conditions. And

can be specified arbitrarily within our far field conditions and boundary smoothness

conditions and of course the differentiability conditions. The primary interest is

however in the acceleration potential at z 0+ definable through f2(t, 0_',z).

Let 4)p(t,0_', z) denote the Possio solution for the velocity potential. This is a

particular solution obtained by the "doublet-at-source" method. But this solution

can be expressed in the form (5.3) for an appropriate initial condition. Let

xp(t) o_p
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Then we have:

o@(t) Dw(t, .)

Let us define the Laplace transform:

s>(a) _

Then we have

f0 t+ s'(t)(_>(0)- D,_(0,.)) - S'(t- _)D,_(_,.) d_.

e Ato@(t) dr, Re_>O.

(5.6)

_(_) _(_,A) (_(0) - D,_(0)) - _(_,A)(_D,_(_) - D,_(0)) + D,_(_)

D,_(_) + _(_,A)(_(0)- _D,_(_)). (5.7)

But since (see Section 3)

we have that

+p(x,_,0) G(x,_,0) 0

xp(0) 0

_._(_) (i - _(_,A)) D,_(_). (5.S)
and hence

We have in (5.8) an alternate technique fox finding _'p(A), alternate to the Possio

equation.

The acceleration potential defined by (2.22) can be expressed as a linear bounded

transformation/2:

_(t) £_'(t)

and hence

G(_) V)M(_)+ £/_(A,A)(_>(0) - AD@(A)) (5.9)

which shows in particular that g)p(t) has an essential singularity along the entire

negative real axis just as D@(k) has but is otherwise analytic.

Finally we note that

C(_(a,A)(_>(0)- aD,_(a)))

satisfies the Kutta-Joukowski conditions since both g)p(k) and g)M(k) do. But there

are clearly many solutions of the field equations which do rmt. Indeed the question

of characterizing those initial conditions which lead to solutions which satisfy the

Kutta-Jouskowski conditions is open.
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or,

Finally we note that

x(t) - xp(t) _'(t)(x(O)- xp(O))

x(t) x.(t) + x.(0)).

Thus any two solutions differ by a term which depends only on the initial conditions

assumed for the field. Since these conditions in a physical sense rarely are specifiable,

the unsteady aerodynamics can never be determined completely. Note that

IIS(t)xll 2 Ilxll 2

so that there is no energy decay, within this theory! Of course solutions which do not

satisfy the Kutta-Joukowski condition may be dismissed as "not physical."

General Representation for Velocity Potential

The representation (5.1) can be recast as a representation for velocity potential.
Thus:

Theorem 5.1

Any solution 4)(t,x, z) of (2.1) with the flow-tangency and initial conditions can

be represented as
¢(t,x,z) CM(t,X,Z) + ¢_(t,x,z) (5.10)

where 4)_(t, x, z) is the unique solution of (2.1) with a forcing term: viz.:

Ot 2 OtOx Ox 2 a°c 092 Ot 2 OtO_

(5.11)

with homogeneous boundary conditions and initial conditions consistent with

¢_(t,x,z) ¢(t,x,z) - ¢M(t,X,Z), t>O.

Moreover, ¢R(t,x,z) satisfies the Kutta-Joukowski conditions if ¢(t,x,z) does.

Proof

We calculate directly that

02 ¢ R 02 ¢ R 02¢ 02¢ 02¢M 02¢M
+ 2ao_M + 2ao_M 2ao_M-

Ot 2 OtOx Ot 2 OtOx Ot 2 OtOx

7O



Now

02_ 02_ 02_ 2 02_
ot_ + 2_M _ (1- M_) +OtOz _ a_ Oz 2

Oz 2 + a_ Oz 2

since

(1- M 2) 02_M 2 02_M 0
OZ 2 + a_ Oz 2

and (5.11) follows. Since both _b(.) and _bM(') satisfy the flow tangency conditions,

we see from (5.10) that _R(') satisfies homogeneous boundary conditions. The rest

of the statement concerning _bR(') is immediate. []

Let Op(t, z, z) denote the Possio solution. Then

satisfies the Kutta-Joukowski condition and further

,_(o,x, _) o _(o, x,_)

if the downwash initial conditions are zero:

_a(0,x) 0 _a(0,x), Ixl<b

and

_(t,x,_)

is thus the response solely to the forcing function on the right in (5.11), with zero

boundary as well as initial conditions.
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